Your browser doesn't support javascript.
loading
Synthesis, optimization and characterization of silver nanoparticles using the catkin extract of Piper longum for bactericidal effect against food-borne pathogens via conventional and mathematical approaches.
Huang, Hui; Shan, Kuizhong; Liu, Jingbing; Tao, Xiaoxin; Periyasamy, Sivalingam; Durairaj, Siva; Jiang, Ziyu; Jacob, Joe Antony.
Afiliación
  • Huang H; Department of Respiratory Diseases, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, China.
  • Shan K; Department of Oncology, The Second People's Hospital of Kunshan, Kunshan 215300, China.
  • Liu J; Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
  • Tao X; Department of Oncology, Liyang People's Hospital, Liyang 213300, China.
  • Periyasamy S; PG and Research Department of Microbiology, Jamal Mohamed College, Khajanagar, Tiruchirappalli, Tamil Nadu 620020, India.
  • Durairaj S; PG & Research Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu 620005, India.
  • Jiang Z; Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China. Electronic address: johnnyfly528@163.com.
  • Jacob JA; Nanosynthesis Unit, Nanome Consulting, Salem, Tamil Nadu 636008, India. Electronic address: joeantonyjacob@gmail.com.
Bioorg Chem ; 103: 104230, 2020 10.
Article en En | MEDLINE | ID: mdl-32916540
ABSTRACT
Inspired with an increasing environmental awareness, we performed an eco-friendly amenable process for the synthesis of silver nanoparticles (AgNPs) using the catkins of Piper longum as an alternative approach with the existing methods of using plant extracts. The fabrication of nanoparticles occurred within 10 min. This was initially observed by colour change of the solution. UV-visible spectroscopic studies (UV-Vis) were performed for further confirmation. The analysis elucidated that the surface plasmon resonance (SPR) was specifically corresponding to AgNPs. Fourier transform infrared spectrophotometry (FTIR) studies indicated that polyphenols could possibly be the encapsulating agents. The size and shape of the nanoparticles was analysed using Transmission electron microscopy (TEM). The nanoparticles were predominant spheres ranging between 10 and 42 nm at two different scales. The formation of elemental silver was confirmed further by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD). GC-MS analysis was used to identify the possible encapsulates on the nanoparticles. The antibacterial effect of the biosynthesized AgNPs was tested against two gram-positive (Bacillus cereus and Staphylococcus aureus), and five gram-negative (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhi) bacteria. Outcomes of the study suggest that these pathogens were susceptible to the AgNPs. This is the first ever international report on correlating the antibacterial effect of silver nanoparticles using mathematical modelling with a conventional antimicrobial assay. The results indicate that nanoparticles of silver synthesized using catkin extract of P. longum can be exploited towards the development of potential antibacterial agents.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Plata / Extractos Vegetales / Piper / Nanopartículas del Metal / Antibacterianos Idioma: En Revista: Bioorg Chem Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Plata / Extractos Vegetales / Piper / Nanopartículas del Metal / Antibacterianos Idioma: En Revista: Bioorg Chem Año: 2020 Tipo del documento: Article País de afiliación: China