Your browser doesn't support javascript.
loading
Global potential, topology, and pattern selection in a noisy stabilized Kuramoto-Sivashinsky equation.
Chen, Yong-Cong; Shi, Chunxiao; Kosterlitz, J M; Zhu, Xiaomei; Ao, Ping.
Afiliación
  • Chen YC; Shanghai Center for Quantitative Life Sciences, Physics Department, Shanghai University, Shanghai 200444, China.
  • Shi C; Shanghai Center for Quantitative Life Sciences, Physics Department, Shanghai University, Shanghai 200444, China.
  • Kosterlitz JM; Shanghai Center for Quantitative Life Sciences, Physics Department, Shanghai University, Shanghai 200444, China; j_kosterlitz@brown.edu.
  • Zhu X; Department of Physics, Brown University, Providence, RI 02912.
  • Ao P; Shanghai Center for Quantitative Life Sciences, Physics Department, Shanghai University, Shanghai 200444, China.
Proc Natl Acad Sci U S A ; 117(38): 23227-23234, 2020 09 22.
Article en En | MEDLINE | ID: mdl-32917812
We formulate a general method to extend the decomposition of stochastic dynamics developed by Ao et al. [J. Phys. Math. Gen. 37, L25-L30 (2004)] to nonlinear partial differential equations which are nonvariational in nature and construct the global potential or Lyapunov functional for a noisy stabilized Kuramoto-Sivashinsky equation. For values of the control parameter where singly periodic stationary solutions exist, we find a topological network of a web of saddle points of stationary states interconnected by unstable eigenmodes flowing between them. With this topology, a global landscape of the steady states is found. We show how to predict the noise-selected pattern which agrees with those from stochastic simulations. Our formalism and the topology might offer an approach to explore similar systems, such as the Navier Stokes equation.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article País de afiliación: China