Your browser doesn't support javascript.
loading
Equivariant Flow-Based Sampling for Lattice Gauge Theory.
Kanwar, Gurtej; Albergo, Michael S; Boyda, Denis; Cranmer, Kyle; Hackett, Daniel C; Racanière, Sébastien; Rezende, Danilo Jimenez; Shanahan, Phiala E.
Afiliación
  • Kanwar G; Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Albergo MS; Center for Cosmology and Particle Physics, New York University, New York, New York 10003, USA.
  • Boyda D; Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Cranmer K; Center for Cosmology and Particle Physics, New York University, New York, New York 10003, USA.
  • Hackett DC; Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Racanière S; DeepMind Technologies Limited, 5 New Street Square, London EC4A 3TW, United Kingdom.
  • Rezende DJ; DeepMind Technologies Limited, 5 New Street Square, London EC4A 3TW, United Kingdom.
  • Shanahan PE; Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett ; 125(12): 121601, 2020 Sep 18.
Article en En | MEDLINE | ID: mdl-33016765
ABSTRACT
We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are gauge invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in two spacetime dimensions, and find that, at small bare coupling, the approach is orders of magnitude more efficient at sampling topological quantities than more traditional sampling procedures such as hybrid Monte Carlo and heat bath.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos