Your browser doesn't support javascript.
loading
Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice.
Chan, Aye Nyein; Wang, Lin-Lin; Zhu, Yu-Jun; Fan, Ye-Yang; Zhuang, Jie-Yun; Zhang, Zhen-Hua.
Afiliación
  • Chan AN; State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China.
  • Wang LL; Advanced Center for Agricultural Research and Education, Yezin Agricultural University, Naypyitaw, 15013, Myanmar.
  • Zhu YJ; State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China.
  • Fan YY; Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, China.
  • Zhuang JY; State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China.
  • Zhang ZH; State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China.
Theor Appl Genet ; 134(1): 327-337, 2021 Jan.
Article en En | MEDLINE | ID: mdl-33068118
ABSTRACT
KEY MESSAGE A minor QTL for grain weight in rice, qTGW1.2b, was fine-mapped. Its casual gene OsVQ4 was confirmed through CRISPR/Cas9-targeted mutagenesis, exhibiting an effect that was larger than the original QTL effect. The CRISPR/Cas system exhibits a great potential for rice improvement, but the application was severely hindered due to insufficient target genes, especial the lack of validated genes underlying quantitative trait loci having small effects. In this study, a minor QTL for grain weight, qTGW1.2b, was fine-mapped into a 44.0 kb region using seven sets of near isogenic lines (NILs) developed from the indica rice cross (Zhenshan 97)3/Milyang 46, followed by validation of the causal gene using CRISPR/Cas9-targeted mutagenesis. In the NIL populations, 1000-grain weight of the Zhenshan 97 homozygous lines decreased by 0.9-2.0% compared with the Milyang 46 homozygous lines. A gene encoding VQ-motif protein, OsVQ4, was identified as the candidate gene based on parental sequence differences. The effect of OsVQ4 was confirmed by creating CRISPR/Cas9 knockout lines, whose 1000-grain weight decreased by 2.8-9.8% compared with the wild-type transgenic line and the recipient. These results indicate that applying genome editing system could create novel alleles with large phenotypic variation at minor QTLs, which is an effective way to validate causal genes of minor QTLs. Our study establishes a strategy for cloning minor QTLs, which could also be used to identify a large number of potential target genes for the application of CRISPR/Cas system.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oryza / Semillas / Sitios de Carácter Cuantitativo Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Theor Appl Genet Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oryza / Semillas / Sitios de Carácter Cuantitativo Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Theor Appl Genet Año: 2021 Tipo del documento: Article País de afiliación: China