Your browser doesn't support javascript.
loading
Quantification of Ebola virus replication kinetics in vitro.
Liao, Laura E; Carruthers, Jonathan; Smither, Sophie J; Weller, Simon A; Williamson, Diane; Laws, Thomas R; García-Dorival, Isabel; Hiscox, Julian; Holder, Benjamin P; Beauchemin, Catherine A A; Perelson, Alan S; López-García, Martín; Lythe, Grant; Barr, John N; Molina-París, Carmen.
Afiliación
  • Liao LE; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA 87545.
  • Carruthers J; Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
  • Smither SJ; Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK.
  • Weller SA; Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK.
  • Williamson D; Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK.
  • Laws TR; Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK.
  • García-Dorival I; Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
  • Hiscox J; Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
  • Holder BP; Department of Physics, Grand Valley State University, Allendale, MI, USA 49401.
  • Beauchemin CAA; Department of Physics, Ryerson University, Toronto, ON, Canada M5B 2K3.
  • Perelson AS; Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Research Program at RIKEN, Wako, Saitama, Japan, 351-0198.
  • López-García M; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA 87545.
  • Lythe G; Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
  • Barr JN; Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
  • Molina-París C; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
PLoS Comput Biol ; 16(11): e1008375, 2020 11.
Article en En | MEDLINE | ID: mdl-33137116
ABSTRACT
Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Replicación Viral / Ebolavirus / Modelos Biológicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Replicación Viral / Ebolavirus / Modelos Biológicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article