Your browser doesn't support javascript.
loading
Modeling suggests combined-drug treatments for disorders impairing synaptic plasticity via shared signaling pathways.
Smolen, Paul; Wood, Marcelo A; Baxter, Douglas A; Byrne, John H.
Afiliación
  • Smolen P; Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. Paul.D.Smolen@uth.tmc.edu.
  • Wood MA; Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
  • Baxter DA; Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
  • Byrne JH; Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
J Comput Neurosci ; 49(1): 37-56, 2021 02.
Article en En | MEDLINE | ID: mdl-33175283
ABSTRACT
Genetic disorders such as Rubinstein-Taybi syndrome (RTS) and Coffin-Lowry syndrome (CLS) cause lifelong cognitive disability, including deficits in learning and memory. Can pharmacological therapies be suggested that improve learning and memory in these disorders? To address this question, we simulated drug effects within a computational model describing induction of late long-term potentiation (L-LTP). Biochemical pathways impaired in these and other disorders converge on a common target, histone acetylation by acetyltransferases such as CREB binding protein (CBP), which facilitates gene induction necessary for L-LTP. We focused on four drug classes tropomyosin receptor kinase B (TrkB) agonists, cAMP phosphodiesterase inhibitors, histone deacetylase inhibitors, and ampakines. Simulations suggested each drug type alone may rescue deficits in L-LTP. A potential disadvantage, however, was the necessity of simulating strong drug effects (high doses), which could produce adverse side effects. Thus, we investigated the effects of six drug pairs among the four classes described above. These combination treatments normalized impaired L-LTP with substantially smaller individual drug 'doses'. In addition three of these combinations, a TrkB agonist paired with an ampakine and a cAMP phosphodiesterase inhibitor paired with a TrkB agonist or an ampakine, exhibited strong synergism in L-LTP rescue. Therefore, we suggest these drug combinations are promising candidates for further empirical studies in animal models of genetic disorders that impair histone acetylation, L-LTP, and learning.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Preparaciones Farmacéuticas / Modelos Neurológicos Límite: Animals Idioma: En Revista: J Comput Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Preparaciones Farmacéuticas / Modelos Neurológicos Límite: Animals Idioma: En Revista: J Comput Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos