Your browser doesn't support javascript.
loading
The internal structure and geodynamics of Mars inferred from a 4.2-Gyr zircon record.
Costa, Maria M; Jensen, Ninna K; Bouvier, Laura C; Connelly, James N; Mikouchi, Takashi; Horstwood, Matthew S A; Suuronen, Jussi-Petteri; Moynier, Frédéric; Deng, Zhengbin; Agranier, Arnaud; Martin, Laure A J; Johnson, Tim E; Nemchin, Alexander A; Bizzarro, Martin.
Afiliación
  • Costa MM; Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark.
  • Jensen NK; Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark.
  • Bouvier LC; Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark.
  • Connelly JN; Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark.
  • Mikouchi T; The University Museum, The University of Tokyo, 118-0033 Tokyo, Japan.
  • Horstwood MSA; Geochronology and Tracers Facility, British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom.
  • Suuronen JP; European Synchrotron Radiation Facility, 38000 Grenoble, France.
  • Moynier F; Institut de Physique du Globe de Paris, Université de Paris, 75005 Paris, France.
  • Deng Z; Institut de Physique du Globe de Paris, Université de Paris, 75005 Paris, France.
  • Agranier A; Laboratoire Géosciences Océan (UMR CNRS 6538), Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280 Plouzané, France.
  • Martin LAJ; Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA 6009, Australia.
  • Johnson TE; School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia.
  • Nemchin AA; School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia.
  • Bizzarro M; Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark; bizzarro@sund.ku.dk.
Proc Natl Acad Sci U S A ; 117(49): 30973-30979, 2020 12 08.
Article en En | MEDLINE | ID: mdl-33199613
ABSTRACT
Combining U-Pb ages with Lu-Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population (n = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet's surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars's igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet's magmatic history.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article País de afiliación: Dinamarca

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article País de afiliación: Dinamarca