Neodymium Chloride-Doped Perovskite Nanocrystals for Efficient Blue Light-Emitting Devices.
ACS Appl Mater Interfaces
; 12(48): 53891-53898, 2020 Dec 02.
Article
en En
| MEDLINE
| ID: mdl-33210903
Metal halides doping of perovskite nanocrystals (NCs) has been shown to precisely control nonradiative pathways and to improve photoluminescence quantum yield (PLQY). Here, we report a trivalent lanthanide halide neodymium (III) chloride (NdCl3)-doped perovskite NCs prepared with a post-synthetic room temperature treatment for efficient blue light-emitting devices (LEDs). The Nd 3d and Cl 2p core peaks were observed in the NdCl3-doped NCs, which allowed for simultaneous doping of Nd3+ and Cl- into the pristine CsPbBr3 NCs. The NdCl3-doped NCs exhibited blue emission at a peak wavelength of 478 nm with a high PLQY of 97% in solution. We found that the Nd3+ cation incorporated into the NCs more effectively suppressed nonradiative recombination compared with common halide anion exchange from temperature dependence of optical properties. Blue LEDs based on NdCl3-doped NCs had an external quantum efficiency of 2.7%, which represents a considerable performance improvement compared with LEDs based on organic chloride salt-doped NCs.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Japón