Your browser doesn't support javascript.
loading
The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.
Wiens, Roger C; Maurice, Sylvestre; Robinson, Scott H; Nelson, Anthony E; Cais, Philippe; Bernardi, Pernelle; Newell, Raymond T; Clegg, Sam; Sharma, Shiv K; Storms, Steven; Deming, Jonathan; Beckman, Darrel; Ollila, Ann M; Gasnault, Olivier; Anderson, Ryan B; André, Yves; Michael Angel, S; Arana, Gorka; Auden, Elizabeth; Beck, Pierre; Becker, Joseph; Benzerara, Karim; Bernard, Sylvain; Beyssac, Olivier; Borges, Louis; Bousquet, Bruno; Boyd, Kerry; Caffrey, Michael; Carlson, Jeffrey; Castro, Kepa; Celis, Jorden; Chide, Baptiste; Clark, Kevin; Cloutis, Edward; Cordoba, Elizabeth C; Cousin, Agnes; Dale, Magdalena; Deflores, Lauren; Delapp, Dorothea; Deleuze, Muriel; Dirmyer, Matthew; Donny, Christophe; Dromart, Gilles; George Duran, M; Egan, Miles; Ervin, Joan; Fabre, Cecile; Fau, Amaury; Fischer, Woodward; Forni, Olivier.
Afiliación
  • Wiens RC; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Maurice S; Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France.
  • Robinson SH; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Nelson AE; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Cais P; Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Bordeaux, France.
  • Bernardi P; Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France.
  • Newell RT; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Clegg S; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Sharma SK; University of Hawaii, Manoa, HI USA.
  • Storms S; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Deming J; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Beckman D; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Ollila AM; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Gasnault O; Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France.
  • Anderson RB; U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ USA.
  • André Y; Centre National d'Etudes Spatiales, Toulouse, France.
  • Michael Angel S; University of South Carolina, Columbia, SC USA.
  • Arana G; University of Basque Country, UPV/EHU, Bilbao, Spain.
  • Auden E; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Beck P; Institut de Planétologie et d'Astrophysique de Grenoble, Université Grenoble Alpes, Grenoble, France.
  • Becker J; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Benzerara K; Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
  • Bernard S; Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
  • Beyssac O; Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
  • Borges L; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Bousquet B; Centre Lasers Intenses et Applications, University of Bordeaux, Bordeaux, France.
  • Boyd K; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Caffrey M; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Carlson J; Jet Propulsion Laboratory/Caltech, Pasadena, CA USA.
  • Castro K; University of Basque Country, UPV/EHU, Bilbao, Spain.
  • Celis J; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Chide B; Institut Supérieur de l'Aéronautique et de l'Espace (ISAE), Toulouse, France.
  • Clark K; Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France.
  • Cloutis E; Jet Propulsion Laboratory/Caltech, Pasadena, CA USA.
  • Cordoba EC; University of Winnipeg, Winnipeg, Canada.
  • Cousin A; Jet Propulsion Laboratory/Caltech, Pasadena, CA USA.
  • Dale M; Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France.
  • Deflores L; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Delapp D; Jet Propulsion Laboratory/Caltech, Pasadena, CA USA.
  • Deleuze M; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Dirmyer M; Centre National d'Etudes Spatiales, Toulouse, France.
  • Donny C; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Dromart G; Centre National d'Etudes Spatiales, Toulouse, France.
  • George Duran M; Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, 69364 Lyon, France.
  • Egan M; Los Alamos National Laboratory, Los Alamos, NM USA.
  • Ervin J; University of Hawaii, Manoa, HI USA.
  • Fabre C; Jet Propulsion Laboratory/Caltech, Pasadena, CA USA.
  • Fau A; GeoRessources, Université de Lorraine, Nancy, France.
  • Fischer W; Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
  • Forni O; California Institute of Technology, Pasadena, CA USA.
Space Sci Rev ; 217(1): 4, 2021.
Article en En | MEDLINE | ID: mdl-33380752
ABSTRACT
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm - 1 Raman shift relative to the 532 nm green laser beam) with 12 cm - 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Space Sci Rev Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Space Sci Rev Año: 2021 Tipo del documento: Article