Your browser doesn't support javascript.
loading
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach.
Fernández, Pamela A; Navarro, Jorge M; Camus, Carolina; Torres, Rodrigo; Buschmann, Alejandro H.
Afiliación
  • Fernández PA; Centro i~mar and CeBiB, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt, Chile. pamela.fernandez@ulagos.cl.
  • Navarro JM; Instituto de Ciencias Marinas y Limnológicas and Centro Fondap de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.
  • Camus C; Centro i~mar and CeBiB, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt, Chile.
  • Torres R; Centro de Investigación en Ecosistemas de la Patagonia (CIEP), José de Moraleda 16, Coyhaique, Chile.
  • Buschmann AH; Centro i~mar and CeBiB, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt, Chile.
Sci Rep ; 11(1): 2510, 2021 01 28.
Article en En | MEDLINE | ID: mdl-33510300
The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3- assimilation, and enhanced expression of metabolic-genes involved in the NO3- and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3- and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species' response to climate change.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Chile

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Chile