Your browser doesn't support javascript.
loading
Radioactive Source Localisation via Projective Linear Reconstruction.
White, Samuel R; Wood, Kieran T; Martin, Peter G; Connor, Dean T; Scott, Thomas B; Megson-Smith, David A.
Afiliación
  • White SR; HH Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
  • Wood KT; Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, UK.
  • Martin PG; HH Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
  • Connor DT; HH Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
  • Scott TB; HH Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
  • Megson-Smith DA; HH Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
Sensors (Basel) ; 21(3)2021 Jan 26.
Article en En | MEDLINE | ID: mdl-33530392
Radiation mapping, through the detection of ionising gamma-ray emissions, is an important technique used across the nuclear industry to characterise environments over a range of length scales. In complex scenarios, the precise localisation and activity of radiological sources becomes difficult to determine due to the inability to directly image gamma photon emissions. This is a result of the potentially unknown number of sources combined with uncertainties associated with the source-detector separation-causing an apparent 'blurring' of the as-detected radiation field relative to the true distribution. Accurate delimitation of distinct sources is important for decommissioning, waste processing, and homeland security. Therefore, methods for estimating the precise, 'true' solution from radiation mapping measurements are required. Herein is presented a computational method of enhanced radiological source localisation from scanning survey measurements conducted with a robotic arm. The procedure uses an experimentally derived Detector Response Function (DRF) to perform a randomised-Kaczmarz deconvolution from robotically acquired radiation field measurements. The performance of the process is assessed on radiation maps obtained from a series of emulated waste processing scenarios. The results demonstrate a Projective Linear Reconstruction (PLR) algorithm can successfully locate a series of point sources to within 2 cm of the true locations, corresponding to resolution enhancements of between 5× and 10×.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article