A novel method for data fusion over entity-relation graphs and its application to protein-protein interaction prediction.
Bioinformatics
; 37(16): 2275-2281, 2021 Aug 25.
Article
en En
| MEDLINE
| ID: mdl-33560405
MOTIVATION: Modern bioinformatics is facing increasingly complex problems to solve, and we are indeed rapidly approaching an era in which the ability to seamlessly integrate heterogeneous sources of information will be crucial for the scientific progress. Here, we present a novel non-linear data fusion framework that generalizes the conventional matrix factorization paradigm allowing inference over arbitrary entity-relation graphs, and we applied it to the prediction of protein-protein interactions (PPIs). Improving our knowledge of PPI networks at the proteome scale is indeed crucial to understand protein function, physiological and disease states and cell life in general. RESULTS: We devised three data fusion-based models for the proteome-level prediction of PPIs, and we show that our method outperforms state of the art approaches on common benchmarks. Moreover, we investigate its predictions on newly published PPIs, showing that this new data has a clear shift in its underlying distributions and we thus train and test our models on this extended dataset. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Bélgica