Your browser doesn't support javascript.
loading
Deep Neural Networks for Epistatic Sequence Analysis.
Lin, Jiecong.
Afiliación
  • Lin J; City University of Hong Kong, Kowloon Tong, Hong Kong. jieconlin3-c@my.cityu.edu.hk.
Methods Mol Biol ; 2212: 277-289, 2021.
Article en En | MEDLINE | ID: mdl-33733362
We report a step-by-step protocol to use pysster, a TensorFlow-based package for building deep neural networks on a broad range of epistatic sequences such as DNA, RNA, or annotated secondary structure sequences. Pysster provides users comprehensive supports for developing, training, and evaluating the self-defined deep neural networks on sequence data. Moreover, pysster allows users to easily visualize the resulting perditions, which is helpful to uncover the "black box" of deep neural networks. Here, we describe a step-by-step application of pysster to classify the RNA A-to-I editing regions and interpret the model predictions. To further demonstrate the generalizability of pysster, we utilized it to build and evaluated a new deep neural network on an artificial epistatic sequence dataset.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / ARN / Epistasis Genética / Aprendizaje Profundo / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Hong Kong

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / ARN / Epistasis Genética / Aprendizaje Profundo / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Hong Kong