Deep Neural Networks for Epistatic Sequence Analysis.
Methods Mol Biol
; 2212: 277-289, 2021.
Article
en En
| MEDLINE
| ID: mdl-33733362
We report a step-by-step protocol to use pysster, a TensorFlow-based package for building deep neural networks on a broad range of epistatic sequences such as DNA, RNA, or annotated secondary structure sequences. Pysster provides users comprehensive supports for developing, training, and evaluating the self-defined deep neural networks on sequence data. Moreover, pysster allows users to easily visualize the resulting perditions, which is helpful to uncover the "black box" of deep neural networks. Here, we describe a step-by-step application of pysster to classify the RNA A-to-I editing regions and interpret the model predictions. To further demonstrate the generalizability of pysster, we utilized it to build and evaluated a new deep neural network on an artificial epistatic sequence dataset.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Programas Informáticos
/
ARN
/
Epistasis Genética
/
Aprendizaje Profundo
/
Modelos Genéticos
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Methods Mol Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2021
Tipo del documento:
Article
País de afiliación:
Hong Kong