Genome-wide association mapping for resistance to bacterial blight and bacterial leaf streak in rice.
Planta
; 253(5): 94, 2021 Apr 08.
Article
en En
| MEDLINE
| ID: mdl-33830376
MAIN CONCLUSION: Using genome-wide SNP association mapping, a total of 77 and 7 loci were identified for rice bacterial blight and bacterial leaf streak resistance, respectively, which may facilitate rice resistance improvement. Bacterial blight (BB) and bacterial leaf streak (BLS) caused by Gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), respectively, are two economically important diseases negatively affecting rice production. To mine new sources of resistance, a set of rice germplasm collection consisting of 895 re-sequenced accessions from the 3000 Rice Genomes Project (3 K RGP) were screened for BB and BLS resistance under field conditions. Higher levels of BB resistance were observed in aus/boro subgroup, whereas the japonica, temperate japonica and tropical japonica subgroups possessed comparatively high levels of resistance to BLS. A genome-wide association study (GWAS) mined 77 genomic loci significantly associated with BB and 7 with BLS resistance. The phenotypic variance (R2) explained by these loci ranged from 0.4 to 30.2%. Among the loci, 7 for BB resistance were co-localized with known BB resistance genes and one for BLS resistance overlapped with a previously reported BLS resistance QTL. A search for the candidates in other novel loci revealed several defense-related genes that may be involved in resistance to BB and BLS. High levels of phenotypic resistance to BB or BLS could be attributed to the accumulation of the resistance (R) alleles at the associated loci, indicating their potential value in rice resistance breeding via gene pyramiding. The GWAS analysis validated the known genes underlying BB and BLS resistance and identified novel loci that could enrich the current resistance gene pool. The resources with strong resistance and significant SNPs identified in this study are potentially useful in breeding for BB and BLS resistance.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Enfermedades de las Plantas
/
Oryza
/
Xanthomonas
/
Estudio de Asociación del Genoma Completo
/
Resistencia a la Enfermedad
Tipo de estudio:
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Planta
Año:
2021
Tipo del documento:
Article
País de afiliación:
China