Your browser doesn't support javascript.
loading
Interpretation of allele-specific chromatin accessibility using cell state-aware deep learning.
Atak, Zeynep Kalender; Taskiran, Ibrahim Ihsan; Demeulemeester, Jonas; Flerin, Christopher; Mauduit, David; Minnoye, Liesbeth; Hulselmans, Gert; Christiaens, Valerie; Ghanem, Ghanem-Elias; Wouters, Jasper; Aerts, Stein.
Afiliación
  • Atak ZK; VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.
  • Taskiran II; KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium.
  • Demeulemeester J; VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.
  • Flerin C; KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium.
  • Mauduit D; VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.
  • Minnoye L; KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium.
  • Hulselmans G; Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
  • Christiaens V; VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.
  • Ghanem GE; KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium.
  • Wouters J; VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.
  • Aerts S; KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium.
Genome Res ; 31(6): 1082-1096, 2021 06.
Article en En | MEDLINE | ID: mdl-33832990
Genomic sequence variation within enhancers and promoters can have a significant impact on the cellular state and phenotype. However, sifting through the millions of candidate variants in a personal genome or a cancer genome, to identify those that impact cis-regulatory function, remains a major challenge. Interpretation of noncoding genome variation benefits from explainable artificial intelligence to predict and interpret the impact of a mutation on gene regulation. Here we generate phased whole genomes with matched chromatin accessibility, histone modifications, and gene expression for 10 melanoma cell lines. We find that training a specialized deep learning model, called DeepMEL2, on melanoma chromatin accessibility data can capture the various regulatory programs of the melanocytic and mesenchymal-like melanoma cell states. This model outperforms motif-based variant scoring, as well as more generic deep learning models. We detect hundreds to thousands of allele-specific chromatin accessibility variants (ASCAVs) in each melanoma genome, of which 15%-20% can be explained by gains or losses of transcription factor binding sites. A considerable fraction of ASCAVs are caused by changes in AP-1 binding, as confirmed by matched ChIP-seq data to identify allele-specific binding of JUN and FOSL1. Finally, by augmenting the DeepMEL2 model with ChIP-seq data for GABPA, the TERT promoter mutation, as well as additional ETS motif gains, can be identified with high confidence. In conclusion, we present a new integrative genomics approach and a deep learning model to identify and interpret functional enhancer mutations with allelic imbalance of chromatin accessibility and gene expression.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cromatina / Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2021 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cromatina / Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2021 Tipo del documento: Article País de afiliación: Bélgica