Your browser doesn't support javascript.
loading
Harnessing artificial intelligence in cardiac rehabilitation, a systematic review.
Sotirakos, Sara; Fouda, Basem; Mohamed Razif, Noor Adeebah; Cribben, Niall; Mulhall, Cormac; O'Byrne, Aisling; Moran, Bridget; Connolly, Ruairi.
Afiliación
  • Sotirakos S; Trinity College Dublin, School of Medicine, Dublin 2, Ireland.
  • Fouda B; Trinity College Dublin, School of Medicine, Dublin 2, Ireland.
  • Mohamed Razif NA; Trinity College Dublin, School of Medicine, Dublin 2, Ireland.
  • Cribben N; University Hospital Galway, Galway, Ireland.
  • Mulhall C; Trinity College Dublin, School of Medicine, Dublin 2, Ireland.
  • O'Byrne A; Trinity College Dublin, School of Medicine, Dublin 2, Ireland.
  • Moran B; Trinity College Dublin, School of Medicine, Dublin 2, Ireland.
  • Connolly R; Trinity College Dublin, School of Medicine, Dublin 2, Ireland.
Future Cardiol ; 18(2): 154-164, 2022 02.
Article en En | MEDLINE | ID: mdl-33860679
Lay abstract Artificial intelligence (AI) involves the use of technologies capable of making decisions based on data provided. AI can be used in healthcare to provide actionable data for a clinician by analyzing patterns in patient data to predict outcomes and guide treatment. Cardiovascular disease is the leading cause of death worldwide. Cardiac rehabilitation is a therapy proven to reduce mortality and morbidity from cardiovascular disease. This study outlines three cases of AI based healthcare tools in cardiac rehabilitation. This includes the provision of personalized, home-based cardiac rehabilitation, the early detection of cardiac events through smart watch monitoring and by providing clinician decision making support in cardiac failure rehabilitation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Rehabilitación Cardiaca Tipo de estudio: Guideline / Prognostic_studies / Screening_studies / Systematic_reviews Límite: Humans Idioma: En Revista: Future Cardiol Asunto de la revista: CARDIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Irlanda

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Rehabilitación Cardiaca Tipo de estudio: Guideline / Prognostic_studies / Screening_studies / Systematic_reviews Límite: Humans Idioma: En Revista: Future Cardiol Asunto de la revista: CARDIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Irlanda