Your browser doesn't support javascript.
loading
Improving the Generalizability of Infantile Cataracts Detection via Deep Learning-Based Lens Partition Strategy and Multicenter Datasets.
Jiang, Jiewei; Lei, Shutao; Zhu, Mingmin; Li, Ruiyang; Yue, Jiayun; Chen, Jingjing; Li, Zhongwen; Gong, Jiamin; Lin, Duoru; Wu, Xiaohang; Lin, Zhuoling; Lin, Haotian.
Afiliación
  • Jiang J; School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China.
  • Lei S; School of Communications and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China.
  • Zhu M; School of Mathematics and Statistics, Xidian University, Xi'an, China.
  • Li R; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
  • Yue J; School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China.
  • Chen J; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
  • Li Z; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
  • Gong J; School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, China.
  • Lin D; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
  • Wu X; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
  • Lin Z; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
  • Lin H; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
Front Med (Lausanne) ; 8: 664023, 2021.
Article en En | MEDLINE | ID: mdl-34026791
ABSTRACT
Infantile cataract is the main cause of infant blindness worldwide. Although previous studies developed artificial intelligence (AI) diagnostic systems for detecting infantile cataracts in a single center, its generalizability is not ideal because of the complicated noises and heterogeneity of multicenter slit-lamp images, which impedes the application of these AI systems in real-world clinics. In this study, we developed two lens partition strategies (LPSs) based on deep learning Faster R-CNN and Hough transform for improving the generalizability of infantile cataracts detection. A total of 1,643 multicenter slit-lamp images collected from five ophthalmic clinics were used to evaluate the performance of LPSs. The generalizability of Faster R-CNN for screening and grading was explored by sequentially adding multicenter images to the training dataset. For the normal and abnormal lenses partition, the Faster R-CNN achieved the average intersection over union of 0.9419 and 0.9107, respectively, and their average precisions are both > 95%. Compared with the Hough transform, the accuracy, specificity, and sensitivity of Faster R-CNN for opacity area grading were improved by 5.31, 8.09, and 3.29%, respectively. Similar improvements were presented on the other grading of opacity density and location. The minimal training sample size required by Faster R-CNN is determined on multicenter slit-lamp images. Furthermore, the Faster R-CNN achieved real-time lens partition with only 0.25 s for a single image, whereas the Hough transform needs 34.46 s. Finally, using Grad-Cam and t-SNE techniques, the most relevant lesion regions were highlighted in heatmaps, and the high-level features were discriminated. This study provides an effective LPS for improving the generalizability of infantile cataracts detection. This system has the potential to be applied to multicenter slit-lamp images.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Clinical_trials / Diagnostic_studies Idioma: En Revista: Front Med (Lausanne) Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Clinical_trials / Diagnostic_studies Idioma: En Revista: Front Med (Lausanne) Año: 2021 Tipo del documento: Article País de afiliación: China