Your browser doesn't support javascript.
loading
Discovering and understanding materials through computation.
Louie, Steven G; Chan, Yang-Hao; da Jornada, Felipe H; Li, Zhenglu; Qiu, Diana Y.
Afiliación
  • Louie SG; Department of Physics, University of California at Berkeley, Berkeley, CA, USA. sglouie@berkeley.edu.
  • Chan YH; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. sglouie@berkeley.edu.
  • da Jornada FH; Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
  • Li Z; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Qiu DY; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.
Nat Mater ; 20(6): 728-735, 2021 Jun.
Article en En | MEDLINE | ID: mdl-34045702
Materials modelling and design using computational quantum and classical approaches is by now well established as an essential pillar in condensed matter physics, chemistry and materials science research, in addition to experiments and analytical theories. The past few decades have witnessed tremendous advances in methodology development and applications to understand and predict the ground-state, excited-state and dynamical properties of materials, ranging from molecules to nanoscopic/mesoscopic materials to bulk and reduced-dimensional systems. This issue of Nature Materials presents four in-depth Review Articles on the field. This Perspective aims to give a brief overview of the progress, as well as provide some comments on future challenges and opportunities. We envision that increasingly powerful and versatile computational approaches, coupled with new conceptual understandings and the growth of techniques such as machine learning, will play a guiding role in the future search and discovery of materials for science and technology.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos