Your browser doesn't support javascript.
loading
Nonlinear Localization of Dissipative Modulation Instability.
Nielsen, Alexander U; Xu, Yiqing; Todd, Caleb; Ferré, Michel; Clerc, Marcel G; Coen, Stéphane; Murdoch, Stuart G; Erkintalo, Miro.
Afiliación
  • Nielsen AU; The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand.
  • Xu Y; Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
  • Todd C; The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand.
  • Ferré M; Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
  • Clerc MG; The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand.
  • Coen S; Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
  • Murdoch SG; Departamento de Física and Millenium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile.
  • Erkintalo M; Departamento de Física and Millenium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile.
Phys Rev Lett ; 127(12): 123901, 2021 Sep 17.
Article en En | MEDLINE | ID: mdl-34597105
ABSTRACT
Modulation instability (MI) in the presence of noise typically leads to an irreversible and complete disintegration of a plane wave background. Here we report on experiments performed in a coherently driven nonlinear optical resonator that demonstrate nonlinear localization of dissipative MI formation of persisting domains of MI-driven spatiotemporal chaos surrounded by a stable quasi-plane-wave background. The persisting localization ensues from a combination of bistability and complex spatiotemporal nonlinear dynamics that together permit a locally induced domain of MI to be pinned by a shallow modulation on the plane wave background. We further show that the localized domains of spatiotemporal chaos can be individually addressed-turned on and off at will-and we explore their transport behavior as the strength of the pinning is controlled. Our results reveal new fundamental dynamics at the interface of front dynamics and MI, and offer a route for tailored patterns of noiselike bursts of light.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2021 Tipo del documento: Article País de afiliación: Nueva Zelanda

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2021 Tipo del documento: Article País de afiliación: Nueva Zelanda