Formaldehyde, acrolein and other carbonyls in dwellings of university students. Levels and source characterization.
Chemosphere
; 288(Pt 1): 132429, 2022 Feb.
Article
en En
| MEDLINE
| ID: mdl-34606894
Fifteen carbonyl compounds were investigated in the living rooms and bedrooms of 25 university student flats in the urban area of Ciudad Real (Central Southern Spain) in wintertime. Carbonyls were sampled using Radiello ® passive samplers refilled in the laboratory according to the method described in ISO 16000-3 Standard. The most abundant carbonyls in the living rooms and bedrooms were formaldehyde, acetone, acetaldehyde, hexaldehyde and butyraldehyde. The median concentration levels in the living rooms and bedrooms were: 28.6 and 34.2 µg m-3 for formaldehyde, 18.3 and 23.1 µg m-3 for acetone, 14.3 and 15.8 µg m-3 for acetaldehyde, 11.4 and 14.1 µg m-3 for hexaldehyde and 10.8 and 12.4 µg m-3 for butyraldehyde. The median concentration of formaldehyde, benzaldehyde, valeraldehyde and hexaldehyde was significantly higher in the bedrooms than in the living rooms. Indoor concentrations were significantly higher than outdoor concentrations for all carbonyl measured, indicating that sources in the indoor environment are prevailing in all flats. Principal component analysis, multiple linear regressions and Spearman correlation coefficients were used to investigate the origin, the indoor pollutants determinants and to establish common sources between carbonyls. Eight components were extracted from the application of PCA to the indoor and outdoor measurements accounting for 97.7% of the total variance. Formaldehyde, acetone, acetaldehyde and acrolein presented different indoor sources. In the multiple linear regression analysis, higher formaldehyde concentrations were found in those living rooms with wood floor and smoking was positively associated to acetone, propionaldehyde, benzaldehyde and isovaleraldehyde. Formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde and benzaldehyde concentrations were compared with relevant international guidelines, being their concentrations below recommended values except acrolein, where all measured flats exceeded the reference levels; it would be important to focus on the characterization of emission sources of acrolein in indoor air in order to minimise the exposure and health risk.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Contaminación del Aire Interior
/
Contaminantes Atmosféricos
Límite:
Humans
Idioma:
En
Revista:
Chemosphere
Año:
2022
Tipo del documento:
Article