Your browser doesn't support javascript.
loading
Low-temperature plasma promotes growth of Haematococcus pluvialis and accumulation of astaxanthin by regulating histone H3 lysine 4 tri-methylation.
Li, Lamei; Chen, Zhu; Acheampong, Adolf; Huang, Qing.
Afiliación
  • Li L; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of S
  • Chen Z; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of S
  • Acheampong A; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of S
  • Huang Q; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of S
Bioresour Technol ; 343: 126095, 2022 Jan.
Article en En | MEDLINE | ID: mdl-34624470
ABSTRACT
Astaxanthin exhibits strong antioxidant ability, so researchers endeavor to improve astaxanthin production in Haematococcus pluvialis (H. pluvialis). Previous work revealed that low-temperature plasma (LTP) could improve the astaxanthin yield in H. pluvialis, but the mechanism is still elusive. In this work, we therefore explored the mechanism of LTP promoting algal growth astaxanthin yield, especially from the perspective of epigenetics. Through measurements of hormones and transcription genes, it was found that the levels of strigolactone and abscisic acid in H. pluvialis increased significantly after LTP treatment, accompanied by enhanced expression of astaxanthin synthesis genes. Particularly, one of the key genes, namely CRTISO, was specifically up-regulated. Further experiments via immunofluorescence and ChIP-PCR methods confirmed that histone H3 lysine 4 tri-methylation (H3K4me3) in the promoter region of CRTISO was increased. Therefore, this study demonstrates that LTP can regulate CRTISO and promote the algal growth and astaxanthin accumulation by stimulating phytohormones and regulating H3K4me3.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Histonas / Lisina Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Histonas / Lisina Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article