Your browser doesn't support javascript.
loading
Thermally propagated Al contacts on SiGe nanowires characterized by electron beam induced current in a scanning transmission electron microscope.
Conlan, Aidan P; Luong, Minh Anh; Gentile, Pascal; Moldovan, Grigore; Den Hertog, Martien I; Monroy, Eva; Cooper, David.
Afiliación
  • Conlan AP; Univ. Grenoble Alpes, CEA-LETI, F-38000 Grenoble, France.
  • Luong MA; Univ. Grenoble Alpes, CNRS-Institut Néel, 25 Avenue des Martyrs, F-38000 Grenoble, France.
  • Gentile P; Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, 17 av. des Martyrs, F-38000 Grenoble, France.
  • Moldovan G; Point Electronic GmbH, Erich-Neuss-Weg 15, D-06120 Halle (Saale), Germany.
  • Den Hertog MI; Univ. Grenoble Alpes, CNRS-Institut Néel, 25 Avenue des Martyrs, F-38000 Grenoble, France.
  • Monroy E; Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, 17 av. des Martyrs, F-38000 Grenoble, France.
  • Cooper D; Univ. Grenoble Alpes, CEA-LETI, F-38000 Grenoble, France.
Nanotechnology ; 33(3)2021 Oct 29.
Article en En | MEDLINE | ID: mdl-34633307
ABSTRACT
Here, we use electron beam induced current (EBIC) in a scanning transmission electron microscope to characterize the structure and electronic properties of Al/SiGe and Al/Si-rich/SiGe axial nanowire heterostructures fabricated by thermal propagation of Al in a SiGe nanowire. The two heterostructures behave as Schottky contacts with different barrier heights. From the sign of the beam induced current collected at the contacts, the intrinsic semiconductor doping is determined to be n-type. Furthermore, we find that the silicon-rich double interface presents a lower barrier height than the atomically sharp SiGe/Al interface. With an applied bias, the Si-rich region delays the propagation of the depletion region and presents a reduced free carrier diffusion length with respect to the SiGe nanowire. This behaviour could be explained by a higher residual doping in the Si-rich area. These results demonstrate that scanning transmission electron microscopy EBIC is a powerful method for mapping and quantifying electric fields in micrometer- and nanometer-scale devices.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2021 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2021 Tipo del documento: Article País de afiliación: Francia