Your browser doesn't support javascript.
loading
Photopharmacology of Ion Channels through the Light of the Computational Microscope.
Nin-Hill, Alba; Mueller, Nicolas Pierre Friedrich; Molteni, Carla; Rovira, Carme; Alfonso-Prieto, Mercedes.
Afiliación
  • Nin-Hill A; Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain.
  • Mueller NPF; Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.
  • Molteni C; Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
  • Rovira C; Physics Department, King's College London, London WC2R 2LS, UK.
  • Alfonso-Prieto M; Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article en En | MEDLINE | ID: mdl-34769504
The optical control and investigation of neuronal activity can be achieved and carried out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining a known ligand of the target protein and a photochromic group, as well as an additional electrophilic group for tethered ligands. Such a design strategy can be optimized by including structural data. In addition to experimental structures, computational methods (such as homology modeling, molecular docking, molecular dynamics and enhanced sampling techniques) can provide structural insights to guide photoswitch design and to understand the observed light-regulated effects. This review discusses the application of such structure-based computational methods to photoswitchable ligands targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target protein in a complex with the photoswitchable ligand can shed light on the different activities of the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as well as ion channel subtype selectivity. The examples presented here show how the integration of computational modeling with experimental data can greatly facilitate photoswitchable ligand design and optimization. Recent advances in structural biology, both experimental and computational, are expected to further strengthen this rational photopharmacology approach.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Optogenética / Canales Iónicos Límite: Animals / Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Optogenética / Canales Iónicos Límite: Animals / Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: España