Your browser doesn't support javascript.
loading
Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set.
Matek, Christian; Krappe, Sebastian; Münzenmayer, Christian; Haferlach, Torsten; Marr, Carsten.
Afiliación
  • Matek C; Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
  • Krappe S; Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians-Universität, München-Campus Großhadern, Munich, Germany.
  • Münzenmayer C; Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
  • Haferlach T; Image Processing and Medical Engineering Department, Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany; and.
  • Marr C; Department of Computer Science, University of Koblenz-Landau, Koblenz, Germany; and.
Blood ; 138(20): 1917-1927, 2021 11 18.
Article en En | MEDLINE | ID: mdl-34792573
Biomedical applications of deep learning algorithms rely on large expert annotated data sets. The classification of bone marrow (BM) cell cytomorphology, an important cornerstone of hematological diagnosis, is still done manually thousands of times every day because of a lack of data sets and trained models. We applied convolutional neural networks (CNNs) to a large data set of 171 374 microscopic cytological images taken from BM smears from 945 patients diagnosed with a variety of hematological diseases. The data set is the largest expert-annotated pool of BM cytology images available in the literature. It allows us to train high-quality classifiers of leukocyte cytomorphology that identify a wide range of diagnostically relevant cell species with high precision and recall. Our CNNs outcompete previous feature-based approaches and provide a proof-of-concept for the classification problem of single BM cells. This study is a step toward automated evaluation of BM cell morphology using state-of-the-art image-classification algorithms. The underlying data set represents an educational resource, as well as a reference for future artificial intelligence-based approaches to BM cytomorphology.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Células de la Médula Ósea / Redes Neurales de la Computación / Enfermedades Hematológicas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Blood Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Células de la Médula Ósea / Redes Neurales de la Computación / Enfermedades Hematológicas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Blood Año: 2021 Tipo del documento: Article País de afiliación: Alemania