Your browser doesn't support javascript.
loading
Predicting distant metastases in soft-tissue sarcomas from PET-CT scans using constrained hierarchical multi-modality feature learning.
Peng, Yige; Bi, Lei; Kumar, Ashnil; Fulham, Michael; Feng, Dagan; Kim, Jinman.
Afiliación
  • Peng Y; The School of Computer Science, The University of Sydney, Australia.
  • Bi L; The ARC Training Centre for Innovative BioEngineering, Australia.
  • Kumar A; The School of Computer Science, The University of Sydney, Australia.
  • Fulham M; The ARC Training Centre for Innovative BioEngineering, Australia.
  • Feng D; The ARC Training Centre for Innovative BioEngineering, Australia.
  • Kim J; The School of Biomedical Engineering, The University of Sydney, Australia.
Phys Med Biol ; 66(24)2021 12 07.
Article en En | MEDLINE | ID: mdl-34818637
Objective.Positron emission tomography-computed tomography (PET-CT) is regarded as the imaging modality of choice for the management of soft-tissue sarcomas (STSs). Distant metastases (DM) are the leading cause of death in STS patients and early detection is important to effectively manage tumors with surgery, radiotherapy and chemotherapy. In this study, we aim to early detect DM in patients with STS using their PET-CT data.Approach.We derive a new convolutional neural network method for early DM detection. The novelty of our method is the introduction of a constrained hierarchical multi-modality feature learning approach to integrate functional imaging (PET) features with anatomical imaging (CT) features. In addition, we removed the reliance on manual input, e.g. tumor delineation, for extracting imaging features.Main results.Our experimental results on a well-established benchmark PET-CT dataset show that our method achieved the highest accuracy (0.896) and AUC (0.903) scores when compared to the state-of-the-art methods (unpaired student's t-testp-value < 0.05).Significance.Our method could be an effective and supportive tool to aid physicians in tumor quantification and in identifying image biomarkers for cancer treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sarcoma / Neoplasias de los Tejidos Blandos / Aprendizaje Profundo Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2021 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sarcoma / Neoplasias de los Tejidos Blandos / Aprendizaje Profundo Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2021 Tipo del documento: Article País de afiliación: Australia