Cooperative In Situ Assembly of G-Quadruplex DNAzyme Nanowires for One-Step Sensing of CpG Methylation in Human Genomes.
Nano Lett
; 22(1): 347-354, 2022 01 12.
Article
en En
| MEDLINE
| ID: mdl-34931851
CpG methylation is one the most predominant epigenetic modification that has been recognized as a molecular-level biomarker for various human diseases. Taking advantage of methylation-dependent cleavage and encoding flexibility in nucleic acid functions and structures, we demonstrate the cooperative in situ assembly of G-quadruplex DNAzyme nanowires for one-step sensing of CpG methylation in human genomes. This nanodevice displays good specificity and high sensitivity with a limit of detection (LOD) of 0.565 aM in vitro and 1 cell in vivo. It can distinguish 0.001% CpG methylation level from excess unmethylated DNA, quantify different CpG methylation targets from diverse human cancer cells, and even discriminate CpG methylation expressions between lung tumor and precancerous tissues. Importantly, this nanodevice can be performed isothermally in one step within 2 h in a label-free manner without any bisulfite conversion, fluorescence tagging, and PCR amplification process, providing a new platform for genomic methylation-related clinical diagnosis and biomedical research.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
ADN Catalítico
/
Nanocables
/
G-Cuádruplex
Límite:
Humans
Idioma:
En
Revista:
Nano Lett
Año:
2022
Tipo del documento:
Article
País de afiliación:
China