Your browser doesn't support javascript.
loading
Effects in vitro and in vivo of hesperidin administration in an experimental model of acute lung inflammation.
de Souza, Ana Beatriz Farias; de Matos, Natália Alves; Castro, Thalles de Freitas; Costa, Guilherme de Paula; Oliveira, Laser Antônio Machado; Nogueira, Katiane de Oliveira Pinto Coelho; Ribeiro, Iara Mariana Léllis; Talvani, André; Cangussú, Sílvia Dantas; de Menezes, Rodrigo Cunha Alvim; Bezerra, Frank Silva.
Afiliación
  • de Souza ABF; Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • de Matos NA; Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Castro TF; Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Costa GP; Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Oliveira LAM; Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Nogueira KOPC; Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Ribeiro IML; Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Talvani A; Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Cangussú SD; Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • de Menezes RCA; Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
  • Bezerra FS; Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil. Electronic address: frank@ufop.edu.br.
Free Radic Biol Med ; 180: 253-262, 2022 02 20.
Article en En | MEDLINE | ID: mdl-35092853
ABSTRACT
Mechanical ventilation (MV) is a tool used in critical patient care. However, it can trigger inflammatory and oxidative processes capable of causing or aggravating lung injuries, which is known as ventilator-induced lung injury (VILI). Hesperidin is a flavonoid with antioxidant and anti-inflammatory properties in various diseases. The role of hesperidin in the process triggered by MV is poorly studied. Thus, we hypothesize hesperidin could protect the lung of mice submitted to mechanical ventilation. For that, we evaluated cell viability and reactive oxygen species (ROS) formation in macrophages using different hesperidin concentrations. We observed hesperidin did not reduce cell viability, however; it attenuated the production of intracellular ROS in cells stimulated with lipopolysaccharide (LPS). We further evaluated the effects of hesperidin in vivo in animals submitted to MV. In the bronchoalveolar lavage fluid, there were higher levels of macrophage, lymphocyte and neutrophil counts in animals submitted to MV, indicating an inflammatory process. In the lung tissue, MV induced oxidative damage and increased myeloperoxidase activity, though the antioxidant enzyme activity decreased. MV also induced the production of the inflammatory mediators CCL-2, TNF-α and IL-12. Pretreatment with hesperidin resulted in less recruitment of inflammatory cells to the airways and less oxidative damage. Also, it reduced the formation of CCL-2 and IL-12. Our results show pretreatment with hesperidin can protect the lungs of mice submitted to mechanical ventilation by modulating the inflammatory response and redox imbalance and may act to prevent MV injury.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neumonía / Lesión Pulmonar Inducida por Ventilación Mecánica / Hesperidina Límite: Animals / Humans Idioma: En Revista: Free Radic Biol Med Asunto de la revista: BIOQUIMICA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neumonía / Lesión Pulmonar Inducida por Ventilación Mecánica / Hesperidina Límite: Animals / Humans Idioma: En Revista: Free Radic Biol Med Asunto de la revista: BIOQUIMICA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Brasil