Your browser doesn't support javascript.
loading
Structural and functional insights into the inhibition of human voltage-gated sodium channels by µ-conotoxin KIIIA disulfide isomers.
Tran, Hue N T; McMahon, Kirsten L; Deuis, Jennifer R; Vetter, Irina; Schroeder, Christina I.
Afiliación
  • Tran HNT; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
  • McMahon KL; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
  • Deuis JR; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
  • Vetter I; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia. Electronic address: i.vetter@imb.uq.edu.au.
  • Schroeder CI; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA. Electronic address: christina.schroeder@nih.gov.
J Biol Chem ; 298(3): 101728, 2022 03.
Article en En | MEDLINE | ID: mdl-35167877
µ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a 'native' CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, µ-conotoxin KIIIA, the smallest and most studied µ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native µ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native µ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three µ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of µ-conotoxins targeting therapeutically relevant NaV subtypes.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Conotoxinas / Canales de Sodio Activados por Voltaje / Bloqueadores del Canal de Sodio Activado por Voltaje Límite: Humans Idioma: En Revista: J Biol Chem Año: 2022 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Conotoxinas / Canales de Sodio Activados por Voltaje / Bloqueadores del Canal de Sodio Activado por Voltaje Límite: Humans Idioma: En Revista: J Biol Chem Año: 2022 Tipo del documento: Article País de afiliación: Australia