Your browser doesn't support javascript.
loading
Opioid-Induced Pronociceptive Signaling in the Gastrointestinal Tract Is Mediated by Delta-Opioid Receptor Signaling.
Jaramillo-Polanco, Josue; Lopez-Lopez, Cintya; Yu, Yang; Neary, Emma; Hegron, Alan; Canals, Meritxell; Bunnett, Nigel W; Reed, David E; Lomax, Alan E; Vanner, Stephen J.
Afiliación
  • Jaramillo-Polanco J; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada.
  • Lopez-Lopez C; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada.
  • Yu Y; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada.
  • Neary E; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada.
  • Hegron A; Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York 10010.
  • Canals M; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
  • Bunnett NW; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, NG7 2UH, United Kingdom.
  • Reed DE; Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York 10010.
  • Lomax AE; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada.
  • Vanner SJ; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario K7L 2V7, Canada.
J Neurosci ; 42(16): 3316-3328, 2022 04 20.
Article en En | MEDLINE | ID: mdl-35256532
ABSTRACT
Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Analgésicos Opioides / Morfina Límite: Animals Idioma: En Revista: J Neurosci Año: 2022 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Analgésicos Opioides / Morfina Límite: Animals Idioma: En Revista: J Neurosci Año: 2022 Tipo del documento: Article País de afiliación: Canadá