Your browser doesn't support javascript.
loading
Competitive ability depends on mating system and ploidy level across Capsella species.
Orsucci, Marion; Yang, Xuyue; Vanikiotis, Theofilos; Guerrina, Maria; Duan, Tianlin; Lascoux, Martin; Glémin, Sylvain.
Afiliación
  • Orsucci M; Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
  • Yang X; Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Vanikiotis T; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
  • Guerrina M; Department of Biological Applications & Technology, University of Ioannina, Leof. S. Niarchou GR-451 10, Ioannina, Greece.
  • Duan T; Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
  • Lascoux M; Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
  • Glémin S; Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
Ann Bot ; 129(6): 697-708, 2022 05 12.
Article en En | MEDLINE | ID: mdl-35325927
ABSTRACT
BACKGROUND AND

AIMS:

Self-fertilization is often associated with ecological traits corresponding to the ruderal strategy, and selfers are expected to be less competitive than outcrossers, either because of a colonization/competition trade-off or because of the deleterious genetic effects of selfing. Range expansion could reduce further competitive ability while polyploidy could mitigate the effects of selfing. If pollinators are not limited, individual fitness is thus expected to be higher in outcrossers than in selfers and, within selfers, in polyploids than in diploids. Although often proposed in the botanical literature and also suggested by meta-analyses, these predictions have not been directly tested yet.

METHODS:

In order to compare fitness and the competitive ability of four Capsella species with a different mating system and ploidy level, we combined two complementary experiments. First, we carried out an experiment outdoors in north-west Greece, i.e. within the range of the obligate outcrossing species, C. grandiflora, where several life history traits were measured under two different disturbance treatments, weeded plots vs. unweeded plots. To better control competition and to remove potential effects of local adaptation of the outcrosser, we also performed a similar competition experiment but under growth chamber conditions. KEY

RESULTS:

In the outdoor experiment, disturbance of the environment did not affect the phenotype in any of the four species. For most traits, the obligate outcrossing species performed better than all selfing species. In contrast, polyploids did not survive or reproduce better than diploids. Under controlled conditions, as in the field experiment, the outcrosser had a higher fitness than selfing species and was less affected by competition. Finally, contrary to the outdoor experiment where the two behaved identically, polyploid selfers were less affected by competition than diploid selfes.

CONCLUSIONS:

In the Capsella genus, selfing induces lower fitness than outcrossing and can also reduce competitive ability. The effect of polyploidy is, however, unclear. These results highlight the possible roles of ecological context in the evolution of selfing species.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Capsella Tipo de estudio: Prognostic_studies Idioma: En Revista: Ann Bot Año: 2022 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Capsella Tipo de estudio: Prognostic_studies Idioma: En Revista: Ann Bot Año: 2022 Tipo del documento: Article País de afiliación: Suecia