Assessment of the mechanical suppression of nonuniform electrodeposition in lithium metal batteries.
Phys Chem Chem Phys
; 24(18): 11086-11095, 2022 May 11.
Article
en En
| MEDLINE
| ID: mdl-35471206
Dendrite formation is a long-standing issue in lithium metal batteries. Replacing the conventional liquid electrolytes with semi-solid ones, the non-uniform lithium growth can be potentially mitigated by the mechanical deformation in the solid matrix. The underlying dendrite suppression mechanism is investigated in this study using a mechano-electrochemical phase-field method. Two indicators, namely the arithmetic average height and the elongation rate, are proposed to characterize the surface roughness of lithium dendrites. Our simulation results are summarized in two-dimensional design maps as a function of the porosity and the elastic modulus of the semi-solid electrolytes, which could provide us the guidance for the development of dendrite-free lithium metal batteries.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Taiwán