Your browser doesn't support javascript.
loading
Pt modulation of NbSe2 for enhanced activity and stability: a new Pt3Nb2Se8 compound for highly-efficient alkaline hydrogen evolution.
Luo, Mengjia; Wu, Tong; Xu, Shumao; Wang, Ruiqi; Huang, Fuqiang.
Afiliación
  • Luo M; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China. huangfq@mail.sic.ac.cn.
  • Wu T; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Xu S; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China. huangfq@mail.sic.ac.cn.
  • Wang R; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Huang F; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China. huangfq@mail.sic.ac.cn.
Chem Commun (Camb) ; 58(42): 6204-6207, 2022 May 24.
Article en En | MEDLINE | ID: mdl-35506761
ABSTRACT
Transition metal dichalcogenides (TMDs) have attracted great attention as electrocatalysts for the hydrogen evolution reaction (HER) due to their tunable crystal structures and active sites. However, compared with group VI TMDs (such as MoS2 and WS2), the group V TMDs exhibit poor intrinsic catalytic activity towards the HER because the outermost d orbitals of group V metals have only one electron. Herein, we design a new compound Pt3Nb2Se8 by Pt modulation of NbSe2 with enhanced catalytic activity and structural stability for robust HER in an alkaline medium. The introduction of Pt atoms can not only be used as efficient active sites, but also to transfer electrons to Se to synthetically boost the catalytic activity. The Pt3Nb2Se8 exhibits an overpotential of 44 mV at 10 mA cm-2 and a Tafel slope of 38.4 mV dec-1, superior to those of intrinsic NbSe2 and PtSe2, and even exceeding those of commercial Pt/C. This work aims to provide an approach to design group V-based TMDs with enhanced catalytic activity and stability by electronic regulation, as highly efficient electrocatalysts for the HER.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Chem Commun (Camb) Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Chem Commun (Camb) Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article