Your browser doesn't support javascript.
loading
Flexible and Transparent Electrode of Hybrid Ti3C2TX MXene-Silver Nanowires for High-Performance Quantum Dot Light-Emitting Diodes.
Jiang, Wei; Lee, Seokyeong; Zhao, Kaiying; Lee, Kyuho; Han, Hyowon; Oh, JinWoo; Lee, Hyeokjung; Kim, Hyerim; Koo, Chong Min; Park, Cheolmin.
Afiliación
  • Jiang W; Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea.
  • Lee S; Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea.
  • Zhao K; Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea.
  • Lee K; Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea.
  • Han H; Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea.
  • Oh J; Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea.
  • Lee H; Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea.
  • Kim H; Materials Architecting Research Centre, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
  • Koo CM; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
  • Park C; Materials Architecting Research Centre, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
ACS Nano ; 16(6): 9203-9213, 2022 Jun 28.
Article en En | MEDLINE | ID: mdl-35588151
ABSTRACT
The development of electrodes with high conductivity, optical transparency, and reliable mechanical flexibility and stability is important for numerous solution-processed photoelectronic applications. Although transparent Ti3C2TX MXene electrodes with high conductivity are promising, their suitability for displays remains limited because of the high sheet resistance, which is caused by undesirable flake junctions and surface roughness. Herein, a flexible and transparent electrode has been fabricated that is suitable for a full-solution-processed quantum dot light-emitting diode (QLED). An MXene-silver nanowire (AgNW) hybrid electrode (MXAg) consists of a highly conductive AgNW network mixed with solution-processed MXene flakes. Efficient welding of wire-to-wire junctions with MXene flakes yields an electrode with a low sheet resistance and a high transparency of approximately 13.9 Ω sq-1 and 83.8%, respectively. By employing a thin polymer buffer layer of poly(methyl methacrylate) (PMMA), followed by mild thermal treatment, a hybrid PMMA-based MXene-AgNW (MXAg@PMMA) electrode in which the work function of an MXAg hybrid FTE physically embedded in PMMA (MXAg@PMMA) can be tuned by controlling the amount of MXene in the hybrid film facilitates the development of a high-performance solution-processed QLED that exhibits maximum external quantum and current efficiencies of approximately 9.88% and 25.8 cd/A, respectively, with excellent bending stability. This work function-tunable flexible transparent electrode based on solution-processed nanoconductors provides a way to develop emerging high-performance, wearable, cost-effective, and soft electroluminescent devices.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article