Your browser doesn't support javascript.
loading
Evaluation of Different Landslide Susceptibility Models for a Local Scale in the Chitral District, Northern Pakistan.
Aslam, Bilal; Maqsoom, Ahsen; Khalil, Umer; Ghorbanzadeh, Omid; Blaschke, Thomas; Farooq, Danish; Tufail, Rana Faisal; Suhail, Salman Ali; Ghamisi, Pedram.
Afiliación
  • Aslam B; Department of Earth Sciences, Quaid-e-Azam University, Islamabad 45320, Pakistan.
  • Maqsoom A; Department of Civil Engineering, COMSATS University Islamabad, Wah Cantt 47040, Pakistan.
  • Khalil U; Department of Civil Engineering, COMSATS University Islamabad, Wah Cantt 47040, Pakistan.
  • Ghorbanzadeh O; Institute of Advanced Research in Artificial Intelligence (IARAI), Landstraßer Hauptstraße 5, 1030 Vienna, Austria.
  • Blaschke T; Department of Geoinformatics-Z_GIS, University of Salzburg, 5020 Salzburg, Austria.
  • Farooq D; Department of Civil Engineering, COMSATS University Islamabad, Wah Cantt 47040, Pakistan.
  • Tufail RF; Department of Civil Engineering, COMSATS University Islamabad, Wah Cantt 47040, Pakistan.
  • Suhail SA; Department of Civil Engineering, University of Lahore (UOL), Lahore 54590, Pakistan.
  • Ghamisi P; Institute of Advanced Research in Artificial Intelligence (IARAI), Landstraßer Hauptstraße 5, 1030 Vienna, Austria.
Sensors (Basel) ; 22(9)2022 Apr 19.
Article en En | MEDLINE | ID: mdl-35590797
This work evaluates the performance of three machine learning (ML) techniques, namely logistic regression (LGR), linear regression (LR), and support vector machines (SVM), and two multi-criteria decision-making (MCDM) techniques, namely analytical hierarchy process (AHP) and the technique for order of preference by similarity to ideal solution (TOPSIS), for mapping landslide susceptibility in the Chitral district, northern Pakistan. Moreover, we create landslide inventory maps from LANDSAT-8 satellite images through the change vector analysis (CVA) change detection method. The change detection yields more than 500 landslide spots. After some manual post-processing correction, the landslide inventory spots are randomly split into two sets with a 70/30 ratio for training and validating the performance of the ML techniques. Sixteen topographical, hydrological, and geological landslide-related factors of the study area are prepared as GIS layers. They are used to produce landslide susceptibility maps (LSMs) with weighted overlay techniques using different weights of landslide-related factors. The accuracy assessment shows that the ML techniques outperform the MCDM methods, while SVM yields the highest accuracy of 88% for the resulting LSM.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Deslizamientos de Tierra Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Asia Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Pakistán

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Deslizamientos de Tierra Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Asia Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Pakistán