Your browser doesn't support javascript.
loading
ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1.
Su, Wenjing; Mukherjee, Radha; Yaeger, Rona; Son, Jieun; Xu, Jianing; Na, Na; Merna Timaul, Neilawattie; Hechtman, Jaclyn; Paroder, Viktoriya; Lin, Mika; Mattar, Marissa; Qiu, Juan; Chang, Qing; Zhao, Huiyong; Zhang, Jonathan; Little, Megan; Adachi, Yuta; Han, Sae-Won; Taylor, Barry S; Ebi, Hiromichi; Abdel-Wahab, Omar; de Stanchina, Elisa; Rudin, Charles M; Jänne, Pasi A; McCormick, Frank; Yao, Zhan; Rosen, Neal.
Afiliación
  • Su W; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Mukherjee R; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Yaeger R; Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Son J; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
  • Xu J; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Na N; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Merna Timaul N; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Hechtman J; Department of Pathology, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Paroder V; Department of Radiology, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Lin M; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
  • Mattar M; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Qiu J; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Chang Q; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Zhao H; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Zhang J; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Little M; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Adachi Y; Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.
  • Han SW; UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, South Korea.
  • Taylor BS; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA; Marie-Josee and Henry R. Kravis Center for Molecu
  • Ebi H; Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, 466-8650, Japan.
  • Abdel-Wahab O; Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA.
  • de Stanchina E; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Rudin CM; Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Jänne PA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
  • McCormick F; UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21701,
  • Yao Z; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Mechanistic Biology, Loxo Oncology at Lilly, New
  • Rosen N; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address: rosenn@mskcc.org.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Article en En | MEDLINE | ID: mdl-35613620
ABSTRACT
RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Activadoras de ras GTPasa / Neurofibromina 1 / Proteínas Proto-Oncogénicas A-raf Límite: Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Activadoras de ras GTPasa / Neurofibromina 1 / Proteínas Proto-Oncogénicas A-raf Límite: Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos