Your browser doesn't support javascript.
loading
The impacts of aging pH and time of acid mine drainage solutions on Fe mineralogy and chemical fractions of heavy metals in the sediments.
Ying, Hong; Zhao, Wantong; Feng, Xionghan; Gu, Chunhao; Wang, Xiaoming.
Afiliación
  • Ying H; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
  • Zhao W; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
  • Feng X; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Reme
  • Gu C; Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA.
  • Wang X; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Reme
Chemosphere ; 303(Pt 2): 135077, 2022 Sep.
Article en En | MEDLINE | ID: mdl-35623433
Fe (oxyhydr)oxides are the main components that accumulate heavy metals (HMs) in the acid mine drainage (AMD) sediments, but how the aging pH and time of AMD solution affects the Fe mineralogy and HMs speciation remains ambiguous. Herein, we determined the impacts of aging pH and time on the Fe mineralogy and chemical fractions of HMs in the sediments from Dabaoshan mining area using mineral characterizations, chemical extraction, and AMD solution incubation. For the natural AMD sediments, jarosite and goethite are the major Fe (oxyhydr)oxides in sample S1 with solution pH 2.68, while schwertmannite is dominant in sample S2 with solution pH 6.78, co-existing minor ferrihydrite. With increasing the AMD solution pH, the total contents of HMs (expect for As) and the reducible fraction of HMs (expect for Pb) in the sediments both increase. The HMs of Mn, Zn, Ni, and Cd are mainly associated with Fe (oxyhydr)oxides, while Pb possibly exists as Pb-bearing minerals (e.g., PbSO4) in the sediments. The oxidizable fraction of all HMs is negligible in both sediments. When the AMD solution of S1 was aged at different pHs, schwertmannite is dominant initially at all pHs, with a higher crystallinity being at a lower pH. With increasing aging time, the pre-formed schwertmannite transforms to goethite and jarosite at pH ≤ 3, while it keeps stable at pH 5 and 7 due to the accumulation of more HMs. These new insights are essential to assess the mobility and availability of HMs in the AMD-affected areas.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Metales Pesados Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Metales Pesados Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article País de afiliación: China