Your browser doesn't support javascript.
loading
Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal.
Su, Zih-Chun; Li, Yu-Hao; Lin, Ching-Fuh.
Afiliación
  • Su ZC; Graduate Institute of Photonics and Optoelectronics, The Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
  • Li YH; Graduate Institute of Photonics and Optoelectronics, The Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
  • Lin CF; Graduate Institute of Photonics and Optoelectronics, The Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
Nanomaterials (Basel) ; 12(10)2022 May 20.
Article en En | MEDLINE | ID: mdl-35630971
ABSTRACT
Infrared detection technology has been widely applied in many areas. Unlike internal photoemission and the photoelectric mechanism, which are limited by the interface barrier height and material bandgap, the research of the hot carrier effect from nanometer thickness of metal could surpass the capability of silicon-based Schottky devices to detect mid-infrared and even far-infrared. In this work, we investigate the effects of physical characteristics of Cr nanometal surfaces and metal/silicon interfaces on hot carrier optical detection. Based on the results of scanning electron microscopy, atomic force microscopy, and X-ray diffraction analysis, the hot carrier effect and the variation of optical response intensity are found to depend highly on the physical properties of metal surfaces, such as surface coverage, metal thickness, and internal stress. Since the contact layer formed by Cr and Si is the main role of infrared light detection in the experiment, the higher the metal coverage, the higher the optical response. Additionally, a thicker metal surface makes the hot carriers take a longer time to convert into current signals after generation, leading to signal degradation due to the short lifetime of the hot carriers. Furthermore, the film with the best hot carrier effect induced in the Cr/Si structure is able to detect an infrared signal up to 4.2 µm. Additionally, it has a 229 times improvement in the signal-to-noise ratio (SNR) for a single band compared with ones with less favorable conditions.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Taiwán