Your browser doesn't support javascript.
loading
[Structural Characteristics of Micro-nano Particle Size Biochar and Its Adsorption Mechanism for Cd2].
Ma, Wen-Yan; Pei, Peng-Gang; Gao, Ge; Sun, Yue-Bing.
Afiliación
  • Ma WY; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
  • Pei PG; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
  • Gao G; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
  • Sun YB; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
Huan Jing Ke Xue ; 43(7): 3682-3691, 2022 Jul 08.
Article en Zh | MEDLINE | ID: mdl-35791551
ABSTRACT
The aim of this study was to investigate the structural characteristics of biochar with different micro/nano particle sizes and its effect on the adsorption performance of Cd2+. Corn stalk biochar with different particle sizes (180-250 µm, 50-75 µm, and ≤ 20 µm, denoted as BC-1, BC-2, and BC-3, respectively) were prepared using the sieving and ball milling method. The structural properties of different particle sizes of biochar were analyzed via elemental analysis, laser particle size analysis, SEM, BET, FTIR, and XPS. Additionally, the adsorption mechanisms of Cd2+ by three particle sizes of biochar under initial Cd2+ concentrations, adsorption times, and pH conditions were comparatively studied using static adsorption experiments. The results showed that with the decrease in particle size, the pH and zeta potential of biochar were reduced; the aromaticity and polarity decreased; the specific surface area and pore volume increased; and the intensity of the characteristic peaks containing OH, C[FY=,1]C/C[FY=,1]O, and C-O groups increased. The adsorption kinetics of Cd2+ with different particle diameters of biochar were in accordance with the pseudo-secondary kinetic model, with chemisorption dominating. The equilibrium times were in the decreasing order of BC-1 (540 min)>BC-2 (360 min)>BC-3 (80 min). The Langmuir model could better fit the adsorption isotherm process of Cd2+ on biochar of different particle sizes (R2>0.97), and the maximum adsorption capacity of Cd2+ increased with the decrease in particle size, which was expressed as BC-3 (74.43 mg·g-1)>BC-2 (45.71 mg·g-1)>BC-1 (44.59 mg·g-1). The main mechanisms of Cd2+adsorption by biochar were electrostatic attraction, surface complexation, and cation-π interaction.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Cadmio Tipo de estudio: Prognostic_studies Idioma: Zh Revista: Huan Jing Ke Xue Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Cadmio Tipo de estudio: Prognostic_studies Idioma: Zh Revista: Huan Jing Ke Xue Año: 2022 Tipo del documento: Article País de afiliación: China