Your browser doesn't support javascript.
loading
Structures and Magnetic Ordering in Layered Cr Oxide Arsenides Sr2CrO2Cr2OAs2 and Sr2CrO3CrAs.
Sheath, Bradley C; Xu, Xiaoyu; Manuel, Pascal; Hadermann, Joke; Batuk, Maria; O'Sullivan, John; Bonilla, Ruy S; Clarke, Simon J.
Afiliación
  • Sheath BC; Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom.
  • Xu X; Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom.
  • Manuel P; ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom.
  • Hadermann J; Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
  • Batuk M; Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
  • O'Sullivan J; Department of Materials, University of Oxford, Engineering and Technology Building, Parks Road, Oxford OX1 3PH, United Kingdom.
  • Bonilla RS; Department of Materials, University of Oxford, Engineering and Technology Building, Parks Road, Oxford OX1 3PH, United Kingdom.
  • Clarke SJ; Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom.
Inorg Chem ; 61(31): 12373-12385, 2022 Aug 08.
Article en En | MEDLINE | ID: mdl-35895504
Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO2As4 octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3]+ layers and Cr2+ ions in CrAs4 tetrahedra in [CrAs]- layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs]- layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3]+ layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr2+ moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Néel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido