Your browser doesn't support javascript.
loading
Generating High-Granularity COVID-19 Territorial Early Alerts Using Emergency Medical Services and Machine Learning.
Gianquintieri, Lorenzo; Brovelli, Maria Antonia; Pagliosa, Andrea; Dassi, Gabriele; Brambilla, Piero Maria; Bonora, Rodolfo; Sechi, Giuseppe Maria; Caiani, Enrico Gianluca.
Afiliación
  • Gianquintieri L; Electronics, Information and Biomedical Engineering Department, Politecnico di Milano, 20133 Milan, Italy.
  • Brovelli MA; Civil and Environmental Engineering Department, Politecnico di Milano, 20133 Milan, Italy.
  • Pagliosa A; Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
  • Dassi G; Azienda Regionale Emergenza Urgenza (AREU), 20124 Milan, Italy.
  • Brambilla PM; Azienda Regionale Emergenza Urgenza (AREU), 20124 Milan, Italy.
  • Bonora R; Azienda Regionale Emergenza Urgenza (AREU), 20124 Milan, Italy.
  • Sechi GM; Azienda Regionale Emergenza Urgenza (AREU), 20124 Milan, Italy.
  • Caiani EG; Azienda Regionale Emergenza Urgenza (AREU), 20124 Milan, Italy.
Article en En | MEDLINE | ID: mdl-35897382
The pandemic of COVID-19 has posed unprecedented threats to healthcare systems worldwide. Great efforts were spent to fight the emergency, with the widespread use of cutting-edge technologies, especially big data analytics and AI. In this context, the present study proposes a novel combination of geographical filtering and machine learning (ML) for the development and optimization of a COVID-19 early alert system based on Emergency Medical Services (EMS) data, for the anticipated identification of outbreaks with very high granularity, up to single municipalities. The model, implemented for the region of Lombardy, Italy, showed robust performance, with an overall 80% accuracy in identifying the active spread of the disease. The further post-processing of the output was implemented to classify the territory into five risk classes, resulting in effectively anticipating the demand for interventions by EMS. This model shows state-of-art potentiality for future applications in the early detection of the burden of the impact of COVID-19, or other similar epidemics, on the healthcare system.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Servicios Médicos de Urgencia / COVID-19 Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Servicios Médicos de Urgencia / COVID-19 Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article País de afiliación: Italia