Your browser doesn't support javascript.
loading
Regulation of Immune Homeostasis via Muramyl Peptides-Low Molecular Weight Bioregulators of Bacterial Origin.
Guryanova, Svetlana V.
Afiliación
  • Guryanova SV; Medical Institute, Peoples' Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia.
Microorganisms ; 10(8)2022 Jul 28.
Article en En | MEDLINE | ID: mdl-36013944
Metabolites and fragments of bacterial cells play an important role in the formation of immune homeostasis. Formed in the course of evolution, symbiotic relationships between microorganisms and a macroorganism are manifested, in particular, in the regulation of numerous physiological functions of the human body by the innate immunity receptors. Low molecular weight bioregulators of bacterial origin have recently attracted more and more attention as drugs in the prevention and composition of complex therapy for a wide range of diseases of bacterial and viral etiology. Signaling networks show cascades of causal relationships of deterministic phenomena that support the homeostasis of multicellular organisms at different levels. To create networks, data from numerous biomedical and clinical research databases were used to prepare expert systems for use in pharmacological and biomedical research with an emphasis on muramyl dipeptides. Muramyl peptides are the fragments of the cell wall of Gram-positive and Gram-negative bacteria. Binding of muramyl peptides with intracellular NOD2 receptors is crucial for an immune response on pathogens. Depending on the microenvironment and duration of action, muramyl peptides possess positive or negative regulation of inflammation. Other factors, such as genetic, pollutions, method of application and stress also contribute and should be taken into account. A system biology approach should be used in order to systemize all experimental data for rigorous analysis, with the aim of understanding intrinsic pathways of homeostasis, in order to define precise medicine therapy and drug design.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2022 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2022 Tipo del documento: Article País de afiliación: Rusia