Your browser doesn't support javascript.
loading
Selective c-MYC G4 DNA recognition based on a fluorescent light-up probe with disaggregation-induced emission characteristics.
Li, Hong-Yao; Cao, Hao-Wen; Lang, Xue-Xian; Chen, Yan-Song; Wang, Ming-Qi.
Afiliación
  • Li HY; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China. wmq3415@163.com.
  • Cao HW; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China. wmq3415@163.com.
  • Lang XX; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China. wmq3415@163.com.
  • Chen YS; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China. wmq3415@163.com.
  • Wang MQ; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China. wmq3415@163.com.
J Mater Chem B ; 10(38): 7772-7779, 2022 10 05.
Article en En | MEDLINE | ID: mdl-36069214
ABSTRACT
The c-MYC promoter is well-known as an important oncogene, the overexpression of which leads to ∼80% of all solid tumors. The four-stranded G4 present in the c-MYC promoter has been shown to play a pivotal role in the regulation of c-MYC transcription. Accordingly, strategies employed for c-MYC G4 DNA sensing have implications for the detection of many human pathologies. However, achieving specificity toward c-MYC G4 over other structurally similar G4s is a challenging task. Here, a supramolecular strategy that relies on the recognition-driven disaggregation of a novel BODIPY probe is outlined. The synthesized probe remained almost non-fluorescent in aqueous media in the aggregation state. Of all the tested G4 and non-G4 DNAs, only c-MYC triggered probe disaggregation and induced a significant increase in fluorescence intensity. The binding details discussed here suggest the basis for the recognition of a particular G4 structure, thus opening up a new way for the design and development of sequence-selective supramolecular G4 probes with desired properties.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: G-Cuádruplex Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: G-Cuádruplex Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2022 Tipo del documento: Article