Your browser doesn't support javascript.
loading
Ligand-Free Direct Optical Lithography of Bare Colloidal Nanocrystals via Photo-Oxidation of Surface Ions with Porosity Control.
Pan, Jia-Ahn; Wu, Haoqi; Gomez, Anthony; Ondry, Justin C; Portner, Joshua; Cho, Wooje; Hinkle, Alex; Wang, Di; Talapin, Dmitri V.
Afiliación
  • Pan JA; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Wu H; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Gomez A; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Ondry JC; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Portner J; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Cho W; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Hinkle A; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Wang D; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Talapin DV; Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
ACS Nano ; 16(10): 16067-16076, 2022 Oct 25.
Article en En | MEDLINE | ID: mdl-36121002
Microscale patterning of colloidal nanocrystal (NC) films is important for their integration in devices. Here, we introduce the direct optical patterning of all-inorganic NCs without the use of additional photosensitive ligands or additives. We determined that photoexposure of ligand-stripped, "bare" NCs in air significantly reduces their solubility in polar solvents due to photo-oxidation of surface ions. Doses as low as 20 mJ/cm2 could be used; the only obvious criterion for material selection is that the NCs need to have significant absorption at the irradiation wavelength. However, transparent NCs can still be patterned by mixing them with suitably absorbing NCs. This approach enabled the patterning of bare ZnSe, CdSe, ZnS, InP, CeO2, CdSe/CdS, and CdSe/ZnS NCs as well as mixtures of ZrO2 or HfO2 NCs with ZnSe NCs. Optical, X-ray photoelectron, and infrared spectroscopies show that solubility loss results from desorption of bound solvent due to photo-oxidation of surface ions. We also demonstrate two approaches, compatible with our patterning method, for modulating the porosity and refractive index of NC films. Block copolymer templating decreases the film density, and thus the refractive index, by introducing mesoporosity. Alternatively, hot isostatic pressing increases the packing density and refractive index of NC layers. For example, the packing fraction of a ZnS NC film can be increased from 0.51 to 0.87 upon hot isostatic pressing at 450 °C and 15 000 psi. Our findings demonstrate that direct lithography by photo-oxidation of bare NC surfaces is an accessible patterning method for facilitating the exploration of more complex NC device architectures while eliminating the influence of bulky or insulating surfactants.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos