Calcineurin dephosphorylates topoisomerase IIß and regulates the formation of neuronal-activity-induced DNA breaks.
Mol Cell
; 82(20): 3794-3809.e8, 2022 10 20.
Article
en En
| MEDLINE
| ID: mdl-36206766
Neuronal activity induces topoisomerase IIß (Top2B) to generate DNA double-strand breaks (DSBs) within the promoters of neuronal early response genes (ERGs) and facilitate their transcription, and yet, the mechanisms that control Top2B-mediated DSB formation are unknown. Here, we report that stimulus-dependent calcium influx through NMDA receptors activates the phosphatase calcineurin to dephosphorylate Top2B at residues S1509 and S1511, which stimulates its DNA cleavage activity and induces it to form DSBs. Exposing mice to a fear conditioning paradigm also triggers Top2B dephosphorylation at S1509 and S1511 in the hippocampus, indicating that calcineurin also regulates Top2B-mediated DSB formation following physiological neuronal activity. Furthermore, calcineurin-Top2B interactions following neuronal activity and sites that incur activity-induced DSBs are preferentially localized at the nuclear periphery in neurons. Together, these results reveal how radial gene positioning and the compartmentalization of activity-dependent signaling govern the position and timing of activity-induced DSBs and regulate gene expression patterns in neurons.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
ADN-Topoisomerasas de Tipo II
/
Calcineurina
/
Roturas del ADN de Doble Cadena
/
Neuronas
Límite:
Animals
Idioma:
En
Revista:
Mol Cell
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos