Your browser doesn't support javascript.
loading
Lead Disrupts Mitochondrial Morphology and Function through Induction of ER Stress in Model of Neurotoxicity.
Zhang, Jianbin; Su, Peng; Xue, Chong; Wang, Diya; Zhao, Fang; Shen, Xuefeng; Luo, Wenjing.
Afiliación
  • Zhang J; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
  • Su P; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
  • Xue C; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
  • Wang D; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
  • Zhao F; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
  • Shen X; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
  • Luo W; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article en En | MEDLINE | ID: mdl-36232745
Lead exposure may weaken the ability of learning and memory in the nervous system through mitochondrial paramorphia and dysfunction. However, the underlying mechanism has not been fully elucidated. In our works, with SD rats, primary culture of hippocampal neuron and PC12 cell line model were built up and behavioral tests were performed to determine the learning and memory insults; Western blot, immunological staining, and electron microscope were then conducted to determine endoplasmic reticulum stress and mitochondrial paramorphia and dysfunction. Co-immunoprecipitation were performed to investigate potential protein-protein interaction. The results show that lead exposure may cripple rats' learning and memory capability by inducing endoplasmic reticulum stress and mitochondrial paramorphia and dysfunction. Furthermore, we clarify that enhanced MFN2 ubiquitination degradation mediated by PINK1 may account for mitochondrial paramorphia and endoplasmic reticulum stress. Our work may provide important clues for research on the mechanism of how Pb exposure leads to nervous system damage.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Síndromes de Neurotoxicidad / Plomo Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Síndromes de Neurotoxicidad / Plomo Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: China