Your browser doesn't support javascript.
loading
Artificial intelligence in hematological diagnostics: Game changer or gadget?
Walter, Wencke; Pohlkamp, Christian; Meggendorfer, Manja; Nadarajah, Niroshan; Kern, Wolfgang; Haferlach, Claudia; Haferlach, Torsten.
Afiliación
  • Walter W; MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany. Electronic address: wencke.walter@mll.com.
  • Pohlkamp C; MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany. Electronic address: christian.pohlkamp@mll.com.
  • Meggendorfer M; MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany. Electronic address: manja.meggendorfer@mll.com.
  • Nadarajah N; MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany. Electronic address: niroshan.nadarajah@mll.com.
  • Kern W; MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany. Electronic address: wolfgang.kern@mll.com.
  • Haferlach C; MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany. Electronic address: claudia.haferlach@mll.com.
  • Haferlach T; MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany. Electronic address: torsten.haferlach@mll.com.
Blood Rev ; 58: 101019, 2023 03.
Article en En | MEDLINE | ID: mdl-36241586
The future of clinical diagnosis and treatment of hematologic diseases will inevitably involve the integration of artificial intelligence (AI)-based systems into routine practice to support the hematologists' decision making. Several studies have shown that AI-based models can already be used to automatically differentiate cells, reliably detect malignant cell populations, support chromosome banding analysis, and interpret clinical variants, contributing to early disease detection and prognosis. However, even the best tool can become useless if it is misapplied or the results are misinterpreted. Therefore, in order to comprehensively judge and correctly apply newly developed AI-based systems, the hematologist must have a basic understanding of the general concepts of machine learning. In this review, we provide the hematologist with a comprehensive overview of various machine learning techniques, their current implementations and approaches in different diagnostic subfields (e.g., cytogenetics, molecular genetics), and the limitations and unresolved challenges of the systems.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Blood Rev Asunto de la revista: HEMATOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Blood Rev Asunto de la revista: HEMATOLOGIA Año: 2023 Tipo del documento: Article