Your browser doesn't support javascript.
loading
Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation.
Chen, Ling-Li; Song, Chao; Zhang, Yan; Li, Yi; Zhao, Yu-Hao; Lin, Feng-Yu; Han, Duo-Duo; Dai, Min-Hui; Li, Wen; Pan, Pin-Hua.
Afiliación
  • Chen LL; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Song C; Center of Infection Control, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
  • Zhang Y; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Li Y; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Zhao YH; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Lin FY; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Han DD; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Dai MH; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Li W; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
  • Pan PH; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineer
Eur J Pharmacol ; 936: 175352, 2022 Dec 05.
Article en En | MEDLINE | ID: mdl-36309049
The role of NOD-like receptor protein 3 (NLRP3)-mediated macrophages pyroptosis in acute lung injury (ALI) is well-established. Quercetin (Que) is a natural bioflavonoid compound with anti-inflammatory and antioxidative properties that reportedly inhibits the NLRP3 inflammasome in sepsis-induced organ dysfunctions such as ALI. However, the mechanism underlying the inhibitory effect of quercetin on NLRP3 activation remains unclear. In this study, we established an endotoxin-induced ALI mouse model with an in vitro LPS challenge. We demonstrated that the administration of quercetin could significantly reduce pulmonary injury and decrease the production of pro-inflammatory cytokines. Moreover, we found that quercetin could inhibit the activation of the NLRP3 inflammasome by suppressing the nuclear accumulation of PKM2 and increasing SIRT1 levels. Importantly, treatment with SRT1720 (a specific SIRT1 activator) could inhibit the nuclear accumulation of PKM2 and the activation of NLRP3. Besides, preventing PKM2 dimerization with ML265 yielded an anti-inflammatory effect, similar to findings observed for SRT1720. In addition, we found that SIRT1 silencing or inhibition by EX527 could increase NLRP3 activation and nuclear accumulation of PKM2 and override quercetin-mediated anti-inflammatory activity. These findings indicated that quercetin could downregulate NLRP3 inflammasome activation by inhibiting the nuclear accumulation of PKM2 and upregulating SIRT1 expression, expanding the treatment landscape for ARDS.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lesión Pulmonar Aguda / Inflamasomas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Eur J Pharmacol Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lesión Pulmonar Aguda / Inflamasomas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Eur J Pharmacol Año: 2022 Tipo del documento: Article