Your browser doesn't support javascript.
loading
Graphop mean-field limits and synchronization for the stochastic Kuramoto model.
Gkogkas, Marios Antonios; Jüttner, Benjamin; Kuehn, Christian; Martens, Erik Andreas.
Afiliación
  • Gkogkas MA; Department of Mathematics, Technical University of Munich, 85748 Garching b. München, Germany.
  • Jüttner B; Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Kuehn C; Department of Mathematics, Technical University of Munich, 85748 Garching b. München, Germany.
  • Martens EA; Centre for Mathematical Sciences, Lund University, Sölvegatan 18, 221 00 Lund, Sweden.
Chaos ; 32(11): 113120, 2022 Nov.
Article en En | MEDLINE | ID: mdl-36456312
ABSTRACT
Models of coupled oscillator networks play an important role in describing collective synchronization dynamics in biological and technological systems. The Kuramoto model describes oscillator's phase evolution and explains the transition from incoherent to coherent oscillations under simplifying assumptions, including all-to-all coupling with uniform strength. Real world networks, however, often display heterogeneous connectivity and coupling weights that influence the critical threshold for this transition. We formulate a general mean-field theory (Vlasov-Focker Planck equation) for stochastic Kuramoto-type phase oscillator models, valid for coupling graphs/networks with heterogeneous connectivity and coupling strengths, using graphop theory in the mean-field limit. Considering symmetric odd-valued coupling functions, we mathematically prove an exact formula for the critical threshold for the incoherence-coherence transition. We numerically test the predicted threshold using large finite-size representations of the network model. For a large class of graph models, we find that the numerical tests agree very well with the predicted threshold obtained from mean-field theory. However, the prediction is more difficult in practice for graph structures that are sufficiently sparse. Our findings open future research avenues toward a deeper understanding of mean-field theories for heterogeneous systems.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Física Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Física Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania