Your browser doesn't support javascript.
loading
Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens.
Srivatsa, Sumana; Montazeri, Hesam; Bianco, Gaia; Coto-Llerena, Mairene; Marinucci, Mattia; Ng, Charlotte K Y; Piscuoglio, Salvatore; Beerenwinkel, Niko.
Afiliación
  • Srivatsa S; Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
  • Montazeri H; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
  • Bianco G; Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
  • Coto-Llerena M; Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
  • Marinucci M; Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
  • Ng CKY; Institute of Medical Genetics and Pathology, University Hospital Basel, 4031, Basel, Switzerland.
  • Piscuoglio S; Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
  • Beerenwinkel N; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
Nat Commun ; 13(1): 7748, 2022 12 14.
Article en En | MEDLINE | ID: mdl-36517508
The development of cancer therapies is limited by the availability of suitable drug targets. Potential candidate drug targets can be identified based on the concept of synthetic lethality (SL), which refers to pairs of genes for which an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations is lethal to the cell. Here, we present SLIdR (Synthetic Lethal Identification in R), a statistical framework for identifying SL pairs from large-scale perturbation screens. SLIdR successfully predicts SL pairs even with small sample sizes while minimizing the number of false positive targets. We apply SLIdR to Project DRIVE data and find both established and potential pan-cancer and cancer type-specific SL pairs consistent with findings from literature and drug response screening data. We experimentally validate two predicted SL interactions (ARID1A-TEAD1 and AXIN1-URI1) in hepatocellular carcinoma, thus corroborating the ability of SLIdR to identify potential drug targets.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mutaciones Letales Sintéticas / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mutaciones Letales Sintéticas / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Suiza