Your browser doesn't support javascript.
loading
Discovery, structure, and function of filamentous 3-methylcrotonyl-CoA carboxylase.
Hu, Jason J; Lee, Jane K J; Liu, Yun-Tao; Yu, Clinton; Huang, Lan; Aphasizheva, Inna; Aphasizhev, Ruslan; Zhou, Z Hong.
Afiliación
  • Hu JJ; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Department of Mathematics, UCLA, Los Angeles, CA 90095, USA.
  • Lee JKJ; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA.
  • Liu YT; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA.
  • Yu C; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA.
  • Huang L; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA.
  • Aphasizheva I; Department of Molecular and Cell Biology, Boston University Medical Campus (BUMC), Boston, MA 02118, USA.
  • Aphasizhev R; Department of Molecular and Cell Biology, Boston University Medical Campus (BUMC), Boston, MA 02118, USA; Department of Biochemistry, BUMC, Boston, MA 02118, USA.
  • Zhou ZH; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA. Electronic address: hong.zhou@ucla.edu.
Structure ; 31(1): 100-110.e4, 2023 01 05.
Article en En | MEDLINE | ID: mdl-36543169
ABSTRACT
3-methylcrotonyl-CoA carboxylase (MCC) is a biotin-dependent mitochondrial enzyme necessary for leucine catabolism in most organisms. While the crystal structure of recombinant bacterial MCC has been characterized, the structure and potential polymerization of native MCC remain elusive. Here, we discovered that native MCC from Leishmania tarentolae (LtMCC) forms filaments, and determined the structures of different filament regions at 3.4, 3.9, and 7.3 Å resolution using cryoEM. α6ß6 LtMCCs assemble in a twisted-stacks architecture, manifesting as supramolecular rods up to 400 nm. Filamentous LtMCCs bind biotin non-covalently and lack coenzyme A. Filaments elongate by stacking α6ß6 LtMCCs onto the exterior α-trimer of the terminal LtMCC. This stacking immobilizes the biotin carboxylase domains, sequestering the enzyme in an inactive state. Our results support a new model for LtMCC catalysis, termed the dual-swinging-domains model, and cast new light on the function of polymerization in the carboxylase superfamily and beyond.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biotina / Carboxiliasas Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biotina / Carboxiliasas Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos